Myosin molecular motor dysfunction in dystrophic mouse diaphragm.
نویسندگان
چکیده
Cross-bridge properties and myosin heavy chain (MHC) composition were investigated in isolated diaphragm from 6-mo-old control ( n = 12) and mdx( n = 12) mice. Compared with control, peak tetanic tension fell by 50% in mdx mice ( P < 0.001). The total number of cross bridges per square millimeter (×109), the elementary force per cross bridge, and the peak mechanical efficiency were lower in mdx than in control mice (each P < 0.001). The duration of the cycle and the rate constant for cross-bridge detachment were significantly lower in mdx than in control mice. In the overall population, there was a linear relationship between peak tetanic tension and either total number of cross bridges per square millimeter or elementary force per cross bridge ( r = 0.996 and r = 0.667, respectively, each P < 0.001). The mdx mice presented a higher proportion of type IIA MHC ( P < 0.001) than control mice and a reduction in type IIX MHC ( P < 0.001) and slow myosin isoforms ( P < 0.01) compared with control mice. We concluded that, in mdx mice, impaired diaphragm strength was associated with qualitative and quantitative changes in myosin molecular motors. It is proposed that reduced force generated per cross bridge contributed to diaphragm weakness in mdx mice.
منابع مشابه
Diaphragm rescue alone prevents heart dysfunction in dystrophic mice.
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused, in most cases, by the complete absence of the 427 kDa cytoskeletal protein, dystrophin. There is no effective treatment, and affected individuals die from respiratory failure and cardiomyopathy by age 30. Here, we investigated whether cardiomyopathy could be prevented in animal models of DMD by increasing diaphragm utrop...
متن کاملOxidative stress of myosin contributes to skeletal muscle dysfunction in rats with chronic heart failure.
Intrinsic muscle abnormalities affecting skeletal muscle are often reported during chronic heart failure (CHF). Because myosin is the molecular motor of force generation, we sought to determine whether its dysfunction contributes to skeletal muscle weakness in CHF and, if so, to identify the underlying causative factors. Severe CHF was induced in rats by aortic stenosis. In diaphragm and soleus...
متن کاملRegenerative capacity of the dystrophic (mdx) diaphragm after induced injury.
Duchenne muscular dystrophy is characterized by myofiber necrosis, muscle replacement by connective tissue, and crippling weakness. Although the mdx mouse also lacks dystrophin, most muscles show little myofiber loss or functional impairment. An exception is the mdx diaphragm, which is phenotypically similar to the human disease. Here we tested the hypothesis that the mdx diaphragm has a defect...
متن کاملDiaphragm weakness in pulmonary arterial hypertension: role of sarcomeric dysfunction.
We previously demonstrated that diaphragm muscle weakness is present in experimental pulmonary arterial hypertension (PH). However, the nature of this diaphragm weakness is still unknown. Therefore, the aim of this study was to investigate whether changes at the sarcomeric level contribute to diaphragm weakness in PH. For this purpose, in control rats and rats with monocrotaline-induced PH, con...
متن کاملMolecular and cellular contractile dysfunction of dystrophic muscle from young mice.
The purpose of this study was to determine whether contractile protein alterations are responsible for force deficits in young dystrophic muscle. Contractility of intact extensor digitorum longus muscles and permeabilized fibers from wild-type (wt), dystrophin-deficient (mdx), and dystrophin/utrophin-deficient (mdx:utrn-/-) mice aged 21 and 35 days was determined. Myosin structural dynamics wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 277 6 Pt 1 شماره
صفحات -
تاریخ انتشار 1999